Exact random walk distributions using noncommutative geometry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 L707
(http://iopscience.iop.org/0305-4470/30/21/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:03

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Exact random walk distributions using noncommutative geometry

Jean Bellissard \dagger, Carlos J Camacho \ddagger, Armelle Barelli \dagger and Francisco Claro \ddagger
\dagger Laboratoire de Physique Quantique, UMR5626 associée au CNRS, IRSAMC, Université Paul Sabatier, 118, route de Narbonne, F-31062 Toulouse Cedex 4, France
\ddagger Facultad de Física, P. Universidad Católica de Chile, Casilla 306, Santiago 22, Chile

Received 7 July 1997

Abstract

Using the results obtained by the non-commutative geometry techniques applied to the Harper equation, we derive the areas distribution of random walks of length N on a two-dimensional square lattice for large N, taking into account finite-size contributions.

Let us consider on a square lattice all closed paths of length N starting at the origin. For such a path Γ, let $A(\Gamma)$ be its algebraic area. As $N \rightarrow \infty$, the average size of such a path increases as \sqrt{N} so that $A(\Gamma) \simeq N$ and the renormalized area will be $a=A / N$. We want to compute the probability distribution $\mathcal{P}(A, N)$ of the areas at large but finite N.

In the limit $N \rightarrow \infty$, the distribution was computed first by Lévy using Brownian paths [1]. We will give a method based upon the Harper model, allowing the computation of finite-size corrections in a systematic way. The Harper model was designed in 1955 [2] as the simplest non-trivial model describing the motion of an electron sitting on a twodimensional square lattice and submitted to a uniform magnetic field. Let ϕ be the magnetic flux through the unit cell and let $\phi_{0}=h / e$ be the quantum flux. We set $\gamma=2 \pi \phi / \phi_{0}$. Then given $m=\left(m_{1}, m_{2}\right) \in \mathbb{Z}^{2}$, we denote by $W(m)$ the corresponding magnetic translations [3]. They satisfy the Weyl commutation rules

$$
\begin{equation*}
W(m) W\left(m^{\prime}\right)=W\left(m+m^{\prime}\right) \exp \left(\mathrm{i} \frac{\gamma}{2} m \wedge m^{\prime}\right) \tag{1}
\end{equation*}
$$

where $m^{\prime} \wedge m=m_{1}^{\prime} m_{2}-m_{2}^{\prime} m_{1} \in \mathbb{Z}$. Note that γ plays a rôle similar to the Planck constant in the canonical commutation relation.

Harper's model is given by the following Hamiltonian:

$$
\begin{equation*}
H=\sum_{|a|=1} W(a) \tag{2}
\end{equation*}
$$

where $|a|=\left|a_{1}\right|+\left|a_{2}\right|$ if $a=\left(a_{1}, a_{2}\right) \in \mathbb{Z}^{2}$. In addition, one defines the trace per unit area as the unique linear map \mathcal{T} on the algebra generated by the $W(m)$ s such that

$$
\begin{equation*}
\mathcal{T}(W(m))=\delta_{m, 0} . \tag{3}
\end{equation*}
$$

Then from (1)-(3), we obtain:

$$
\mathcal{T}\left(H^{N}\right)=\sum_{\Gamma: \text { closed paths of length } N} \mathrm{e}^{\mathrm{i} \gamma A(\Gamma) / 2}
$$

where the sum is taken on the set of closed paths starting at the origin of length N. Note that N should be even to get a non-zero sum. Let Ω_{N} be the number of such closed paths, we then obtain:

$$
\begin{equation*}
\sum_{A=-A_{\max }}^{A_{\max }} \mathcal{P}_{N}(A / N) \exp (\mathrm{i} x A / N)=\Omega_{N}^{-1} \sum_{\Gamma} \exp (\mathrm{i} x A(\Gamma) / N)=\left.\Omega_{N}^{-1} \mathcal{T}\left(H^{N}\right)\right|_{\gamma=x / N} \tag{4}
\end{equation*}
$$

From this relation we obtain:

$$
\begin{align*}
\Omega_{N} & =\left.\mathcal{T}\left(H^{N}\right)\right|_{\gamma=0}=\int \frac{\mathrm{d} k_{1} \mathrm{~d} k_{2}}{4 \pi^{2}}\left(2 \cos k_{1}+2 \cos k_{2}\right)^{N} \\
& =\frac{4^{N+1}}{2 \pi N}\left(1+\mathrm{O}\left(1 / N^{2}\right)\right) \quad \text { as } N \rightarrow \infty \tag{5}
\end{align*}
$$

Moreover as $N \rightarrow \infty$, for a given value of $x, \gamma=x / N$ tends to zero, so that we can use a semiclassical argument to compute $\mathcal{T}\left(H^{N}\right)$. It has been shown that the spectrum of H is made of Landau sublevels [4]:
$E_{\ell}^{ \pm}(\gamma)= \pm\left(4-\gamma(2 \ell+1)+\frac{\gamma^{2}}{16}\left[1+(2 \ell+1)^{2}\right]-\mathrm{O}\left(\gamma^{3}\right)\right) \quad \ell=0,1, \ldots, \mathrm{O}(1 / \gamma)$
each with multiplicity per unit area $g_{\ell}^{ \pm}=\gamma / 2 \pi$. So,

$$
\begin{equation*}
\mathcal{T}\left(H^{N}\right)=\sum_{ \pm} \sum_{\ell}\left(E_{\ell}^{ \pm}(\gamma)\right)^{N}[\gamma /(2 \pi)] . \tag{7}
\end{equation*}
$$

Figure 1. Scaling function for the probability of having a loop of area A for a random walk of N steps. Open diamond, plus and open triangle symbols correspond to the finite-size data for $N=16,18$ and 20 , respectively. The full curve corresponds to the universal function (9), as $N \rightarrow \infty$; whereas the broken curves include the $1 / N$ correction term for $N=20$ and 40 .

This gives

$$
\begin{equation*}
\mathcal{T}\left(H^{N}\right)=\frac{4^{N+1}}{2 \pi N} \frac{x / 4}{\sinh (x / 4)}\left[1-\frac{1}{2 N} \frac{(x / 4)^{2}}{\sinh ^{2}(x / 4)}+\mathrm{O}\left(1 / N^{2}\right)\right] \tag{8}
\end{equation*}
$$

Using (4), we obtain the probability distribution

$$
\begin{equation*}
\mathcal{P}_{N}(a)=\frac{\pi}{\cosh ^{2}(2 \pi a)}+\mathrm{O}(1 / N) \tag{9}
\end{equation*}
$$

We numerically computed $\mathcal{P}_{N}(a)$ from formula (8) and compared the result with exact numerical calculations (figure 1).

This work has been partially supported by the ECOS/CONYCIT project C94E07 and FONDECYT no 3940016 (Chile).

References

[1] Lévy P 1965 Processus Stochastiques et Mouvement Brownien (Paris: Gauthier-Villars)
[2] Harper P G 1955 Proc. Phys. Soc. Lond. A 68874 Harper P G 1955 Proc. Phys. Soc. Lond. A 68879
[3] Zak J 1964 Phys. Rev. A 1341602
Zak J 1964 Phys. Rev. A 134 1607-11
[4] Rammal R and Bellissard J 1990 J. Physique 511803

