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LETTER TO THE EDITOR

Exact random walk distributions using noncommutative
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Sabatier, 118, route de Narbonne, F-31062 Toulouse Cedex 4, France
‡ Facultad de F́ısica, P. Universidad Católica de Chile, Casilla 306, Santiago 22, Chile
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Abstract. Using the results obtained by the non-commutative geometry techniques applied
to the Harper equation, we derive the areas distribution of random walks of lengthN on a
two-dimensional square lattice for largeN , taking into account finite-size contributions.

Let us consider on a square lattice all closed paths of lengthN starting at the origin. For
such a path0, let A(0) be its algebraic area. AsN →∞, the average size of such a path
increases as

√
N so thatA(0) ' N and the renormalized area will bea = A/N . We want

to compute the probability distributionP(A,N) of the areas at large but finiteN .
In the limit N → ∞, the distribution was computed first by Lévy using Brownian

paths [1]. We will give a method based upon the Harper model, allowing the computation
of finite-size corrections in a systematic way. The Harper model was designed in 1955
[2] as the simplest non-trivial model describing the motion of an electron sitting on a two-
dimensional square lattice and submitted to a uniform magnetic field. Letφ be the magnetic
flux through the unit cell and letφ0 = h/e be the quantum flux. We setγ = 2πφ/φ0. Then
given m = (m1, m2) ∈ Z2, we denote byW(m) the corresponding magnetic translations
[3]. They satisfy the Weyl commutation rules

W(m)W(m′) = W(m+m′) exp
(

i
γ

2
m ∧m′

)
(1)

wherem′ ∧m = m′1m2−m′2m1 ∈ Z. Note thatγ plays a r̂ole similar to the Planck constant
in the canonical commutation relation.

Harper’s model is given by the following Hamiltonian:

H =
∑
|a|=1

W(a) (2)

where|a| = |a1| + |a2| if a = (a1, a2) ∈ Z2. In addition, one defines the trace per unit area
as the unique linear mapT on the algebra generated by theW(m)s such that

T (W(m)) = δm,0. (3)

Then from (1)–(3), we obtain:

T (HN) =
∑

0:closed paths of lengthN

eiγA(0)/2
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where the sum is taken on the set of closed paths starting at the origin of lengthN . Note
thatN should be even to get a non-zero sum. Let�N be the number of such closed paths,
we then obtain:
Amax∑

A=−Amax

PN(A/N) exp(ixA/N) = �−1
N

∑
0

exp(ixA(0)/N) = �−1
N T (HN)|γ=x/N . (4)

From this relation we obtain:

�N = T (HN)|γ=0 =
∫

dk1 dk2

4π2
(2 cosk1+ 2 cosk2)

N

= 4N+1

2πN
(1+O(1/N2)) asN →∞. (5)

Moreover asN →∞, for a given value ofx, γ = x/N tends to zero, so that we can use
a semiclassical argument to computeT (HN). It has been shown that the spectrum ofH is
made of Landau sublevels [4]:

E±` (γ ) = ±
(

4− γ (2`+ 1)+ γ
2

16
[1+ (2`+ 1)2] −O(γ 3)

)
` = 0, 1, . . . ,O(1/γ )

(6)

each with multiplicity per unit areag±` = γ /2π . So,

T (HN) =
∑
±

∑
`

(E±` (γ ))
N [γ /(2π)]. (7)

Figure 1. Scaling function for the probability of having a loop of areaA for a random walk of
N steps. Open diamond, plus and open triangle symbols correspond to the finite-size data for
N = 16, 18 and 20, respectively. The full curve corresponds to the universal function (9), as
N →∞; whereas the broken curves include the 1/N correction term forN = 20 and 40.
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This gives

T (HN) = 4N+1

2πN

x/4

sinh(x/4)

[
1− 1

2N

(x/4)2

sinh2(x/4)
+O(1/N2)

]
. (8)

Using (4), we obtain the probability distribution

PN(a) = π

cosh2(2πa)
+O(1/N). (9)

We numerically computedPN(a) from formula (8) and compared the result with exact
numerical calculations (figure 1).
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